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ABSTRACT: The evaluation of single-fiber softness by
bending is an ingenious and vital approach for the basic
investigation of both the fiber bending properties and the
textile softness. The bending behavior and bending modulus
of wool, alpaca and silk fibers have been measured by an
axial-buckling method developed by the authors, which
uses the fiber compression bending analyzer (FICBA). The
bending properties of single fibers were quantified by cal-
culating the equivalent bending modulus and the flexural
rigidity by measuring the protruding length and diameter of
fiber needles and the critical force, Pcr, obtained from the
peak point of the force-displacement curve. The measured
data showed that the equivalent bending modulus of the

alpaca fiber is higher than that of wool fiber, and even the
rigidity is 10 times as high as wool, but its friction coefficient
is lower than that of wool, which means that the soft handle
of alpaca fabrics is mainly due to the smooth surface and
low friction coefficient of alpaca fibers in contrast to that of
wool fiber. For the silk fiber, despite high equivalent bend-
ing modulus, the smoother handle of silk should be mainly
due to the thin fiber diameter in contrast to that of keratin
fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 701–707,
2006
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INTRODUCTION

Soft fabrics should have smooth surface, comfortable
touch, and lower flexural rigidity.1 The essential issue
is referenced to two aspects, i.e., the flexibility of fibers
themselves and the slippage capacity between fibers
and yarns. The former is dependent on diameter,
equivalent modulus, cross-sectional shape, and equiv-
alent movable length of the fiber; the latter relies on
fiber surface friction, surface morphology, crimp char-
acteristics of fibers, and the lubricant on the fiber.
Some early researches about keratin fiber softness
were focused on fiber surface property, fiber assem-
bling compression performance, and subjective eval-
uation of touching.2–4 A recent publication3 suggested
that the results from the current methods on the resis-
tance to compression test are not suitable for low-
curvature fibers such as alpaca, and believed that fiber
softness could be measured by pulling a fiber bundle
passing a series of pins. Although it is an interesting
and fruitful testing, it describes the effects of fiber
stiffness, diameter, crimp, and smoothness together;
so it is difficult to identify the main factors contribut-
ing to the soft feeling of alpaca fiber. Because of the

lack of single-fiber bending techniques applicable to
softness measurement, the study on fiber softness can
stop only at the evaluation of fabric handle or fiber
assembling compression. The development of an axi-
al-compression–bending method for single fibers has
been made,4,5 so that the bending behavior of keratin
fiber can be characterized directly.

THEORETICAL

Equivalent bending modulus of single fiber

For the complex fine structure of keratin fibers [Fig.
1(A)], the mechanical property is anisotropic. Suppose
bending a fiber to an angle � with a radius of curva-
ture � as shown in Figure 1(B). The fibrils in outer side
of bending, namely outer fibril layer, are extended,
and those in inner side, namely inner fibril layer, are
compressed, but a synaptic plane in the center, known
as the neutral face “NN,” will be unchanged in length.
As a result of the extension and compression, stresses
will be set up that give an internal couple to balance
the applied couple M. Consider a fibril a b at a per-
pendicular distance y from the neutral plane, thus

�y � y/� (1)

�y � Ey�y (2)
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where Ey is the tangent modulus and obtained from
stress–strain (�–�y) curve at y layer, as shown in Fig-
ure 1(D) theoretically. In fact, �–�2, namely tensile
stress-strain curve, is easily found by tensile testing,
whereas �–�1, pure compressing stress–strain curve, is
difficult to achieve for flexible and fine fibers up to
now. So we leave this problem and adapt a classical
expression for the applied couple, M,

M � � �
A2

�y2y2dA2 � �
A1

�y1y1dA1 � � �
A

�yydA

� �
1
��

A

Eyy2dA � EBIY� (3)

where y� � 1/�, I is the moment of inertia, �y1 and �y2
are the fibril’s compression stress and tensile stress,
respectively, A1 and A2 are the fibril’s compression
area and tensile area, respectively, y1 and y2 are the
compression fibrils and the tensile fibrils at distance
from the neutral plane, respectively, �y is the fibril
stress, A is the cross-sectional area, and EB, the equiv-
alent bending modulus, is an integral and average
value of the tensile tangent modulus and compression
modulus. So we avoid the analytical calculation of
equivalent modulus from the tangent modulus, Ey.

If the tangent modulus, Ey, is divided into two parts,
Ey1 and Ey2, where Ey1 and Ey2 represent the compres-
sion and tensile tangent modulus at y layer, respec-
tively, and assuming that Ey1 and Ey2 are constant and
equal to E1 and E2, the equivalent bending modulus,
EB is

EB � v1E1 � v2E2 (4)

where v1 and v2 represent the volume fraction of a
bent fiber according to its neutral face, and v1 � v2 � 1.

Because Et depends on the layer of fibrils in a fiber,
to ignore the structural effect, that is, �y, E1 and E2 are
always equal to or smaller than Young’s modulus or
initial of tensile and/or compression modulus. As the
mechanical properties of keratin fiber is different from
isotropic metals, such as large and inelastic deforma-
tion, the equivalent bending modulus, EB, should be
much smaller than the initial modulus.

Although Ey can be estimated in theory with eq. (4)
and the relevant assumptions, we adapt a new and
measured method to evaluate the equivalent bending
modulus of keratin fibers, because of the difficult or
impossible determination of E2, v1, and v2.

Axial-compression–bending of single fibers

Schematics of the axial-compression–bending test and
the coordinate system used for the analysis are shown
in Figure 2. A compression force, Pcr, is applied to the
single fiber with length L. The critical force and buck-
led-mode shape for the single fiber is fixed at base and
pinned at the top.6 We solve the differential equation
to find Pcr, according to the model as shown in Figure
2(A). When the fiber buckles, horizontal reactive
forces, R, develop at the supports and a reactive cou-
ple M0 develops at the base. The bending moment in
the buckled fiber at distance X from the base is

M � PY � R�L � X� (5)

From eqs. (4) and (5), the differential equation can
be found as eq. (6)

Figure 1 Fiber morphology and bending of single fiber. (A)
Fibril structure of alpaca fiber. (B) Schematic of single-fiber
bending. (C) Stress distribution of fibril layer during bend-
ing. (D) Tangent moduli of different fibril layers.

Figure 2 Axial-compression–bending of single fiber. (A)
Schematics of the axial-compression–bending test. (B) Real
image of bending and buckling of single alpaca fiber.
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EBIY� � � PY � R�L � X� (6)

So the general solution of the differential equation is

Y � C1 sin kX � C2 cos kX � R�L � X�/P (7)

where a prime denotes differentiation of the displace-
ment v with respect to the longitudinal coordinate X,
k2 � P/EI, L is the extruding length of fiber needle, P
is the force in compressive axial, and R the horizontal
reactive forces.

Three unknown constants C1, C2, and R can be
solved through the three boundary conditions, Y(0)
� Y(L) � 0 and Y�(0) � 0.

Let eq. (7) to match the three conditions to obtain C2
� RL/P � 0, C1k � R/P � 0, C1tgkL � C2 � 0

Nontriviality C1, C2, and R yields the following
equation:

� 0 1 L/P
k 0 � 1/P

tgkL 1 0
� � 0

And obtain the buckling equation:

kL � tgkL (8)

The smallest but nonzero value of kL that satisfies eq.
(8) is kL � 4.493.

The corresponding critical force is

Pcr � �kL�2
EBI
L2 �

20.19EBI
L2 (9)

EXPERIMENTAL

Single-fiber axial-compression–bending test

The axial-compression–bending tests were carried out
by using fiber compression bending analyzer (FICBA).
(The FICBA was researched and developed by Textile
Materials and Technology Lab in Donghua Universi-
ty,5,7 and now manufactured by Powereach® Co.,
Shanghai.) An fiber was axially compressed between
the mechanical stage and a loading piece under obser-
vation using an optical microscope,8 as shown in Fig-
ure 2(B). To determine the relationship between the
critical buckling force and the displacement for a sin-
gle fiber, we assumed that one end of the fiber is fixed,
but the other is pinned. So the base end of fiber was
clamped by two-side-adhesive plaster, which was em-
bedded in a metal groove to simulate the fixed end.
And the top end of fiber was ground into the platen
covered with sandpaper to avoid fiber tip slippage to
simulate the pinned end. The axial compressive
strength of single wool fibers was measured using a

miniature loading apparatus where the fiber was com-
pressed by moving a mechanical stage and the com-
pressive force was directly detected with a load cell.
The axial displacement was calculated from the load-
ing time and the crosshead speed. The crosshead
speed was 0.1 mm/s for the 2-mm long single wool
fibers.

Single-fiber sample preparation

The fibers, including Merino wool, Huacaya alpaca,
and degummed silkworm silk, were collected for the
single-fiber axial-compression–bending test. The fiber
samples were extracted with ether and ethanol for
clearing, then conditioned for more than 2 days under
the standard temperature of 20 	 2°C and relative
humidity of (65 	 2)%, and lastly, the three sorts of
fibers were prepared into single-fiber needles. The
preparing procedure is illustrated in Figure 3 in detail.

The single-fiber sample with certain protruding
length was clamped by two metal grooves. The pro-
truding length of single fiber is determined by fiber
thickness. This means the single-fiber slenderness
(length/thickness) should be appropriate, neither
short enough to be compressed directly to yield, nor
long enough to detect the miniature load of the critical
force. The length and diameter of single-fiber sample
are measured by an optical microscope with a CCD
camera.

Diameter and slenderness of protruding fibers

The protruding length (L), diameter (D) and slender-
ness (L/D) are shown in Table I, with diameters used
for the experiments. The protruding lengths of the
merino wool, huacaya alpaca, and degummed silk-
worm silk fibers was directly measured by optical
microscope with CCD camera on the FICBA. The di-
ameter of single fiber was also measured by optical

Figure 3 Overview of the approach used to prepare pro-
truding single-fiber sample. (A) Every paper window is 5
mm wide and 25mm long. (B) Straightening the single fiber
and stickling it to the paper window by glutinous resin, then
covering it by adhesive tape. (C) Cutting the card into three
independent paper windows and snipping the straightened
fiber with different angles for suitable slenderness. (D) Scis-
soring the card to single-fiber sample. (E) Clamping the
sample into the metal clamper.
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method, but with different angles perpendicular to
fiber, and then the mean diameter D� and the range of
fiber were obtained. The relationship between D� and L
for the wool, alpaca, and silk fibers are shown in
Figure 4(A). The average slenderness L/D has been
calculated from each L/D of the fibers. The relation-
ships between L/D and D for each kind of fibers are
illustrated in Figure 4(B). The dashed line stands for
the mean diameter and mean slenderness. Although
the mean diameter of wool Dw (28.1 �m) is smaller
than that of alpaca Dw (45.1 �m), to make the result of
bending test be more comparable, the protruding
length has been adjusted through snipping the single-
fiber sample shorter to let the mean slenderness of
wool �L/D�w (30.7) close to that of alpaca �L/D�a (36.6).

RESULTS AND DISCUSSION

Force–displacement curves of axial-compression–
bending

The typical plot of the force–displacement (F–d) data
recorded in a single-fiber bending is shown in Figure
5. It can be seen that the critical force represents the
maximum force carrying capacity of the signle fiber.
As textile fibers have a lower proportional limit than
metal fibers, when the stresses in outer fibrils exceed
the proportional limit, the textile fiber no longer fol-
lows Hooke’s law. Of course, the slope of the F–d
curve is unchanged up to the level of force at which
the proportional limit is reached. Then the curve con-
tinues upward, reaches a maximum, the critical force,
Pcr. After that point, the stresses in outer layer result in
the yield of the fibrils, and the curve turns downward.
The detailed shapes of F–d curves depend upon the
material bending properties and the fiber slenderness.

The compression–bending curve during unloading
does not follow the compression–bending curve dur-
ing loading, and a hysteresis loop is produced. The
possible explanation for this behavior is the internal
friction between the fibrils and the molecular chains.
These F–d curves illustrate two important characteris-
tics. First, the critical force of the alpaca fiber with 42.6
�m diameter and 1.72 mm protruding length is the
highest of the three single fibers with same slender-
ness, as shown in Table II. Second, the similar figure of
F–d curves and the hysteresis loops, as shown in Fig-
ure 5, is due to the similar structure with relatively
same slenderness.

Calculation of the equivalent bending modulus

The flexural rigidity of the single fibers, namely the
resistance to bending, represents the softness or stiff-
ness of the fibers.9 Two factors work on it, one is fiber
bending denoted by equivalent bending modulus, and
the other is cross section denoted by diameter and

Figure 5 (A) The diameter and protruding length of three
single-fibers. The fibers have similar slenderness for data
comparing. (B) The F–d curves of axial-compression–bend-
ing test on the fibers. (C) The magnified F–d curve of single
silk fiber. Loading and unloading processes of axial-com-
pression–bending test are shown. The critical force can be
measured on the F–d curve.

TABLE I
Diameters and Slenderness of Single Fiber Sample

Sample No
Diameter range

(�m)
Mean diameter

(�m)
Diameter standard
deviousness (�m)

Slenderness
range

Mean
slenderness

Wool 20 18.6–42.1 28.1 7.0 18.1–43.9 30.7
Alpaca 36 23.9–58.6 45.1 9.1 23.7–56.3 36.6
Silk 15 8.4–12.3 10.7 1.2 39.4–80.2 60.3

Figure 4 Diameter characteristics (a) and slenderness char-
acteristics (b) of single-fiber sample.
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shape factor. To compare the bending properties of
different kinds of fibers, the equivalent bending mod-
ulus must be calculated. Because the cross sections of
some fibers are not exact circles, the fibers will usually
bend at the thinnest part and easiest direction. The
shape factor KB is the ratio of the moment of inertia for
a given cross-sectional area. So we can easily prove
that the shape factor of equilateral triangle is bigger
than that of ellipse:

Icircle : Iequilateral triangle : Iellipse �
1

4	
:

�3
18 :

1
4	e (10)

where e is the ratio of the major axis to minor axis in
ellipse. So the shape factor of equilateral triangle is
1.209, the shape factor of ellipse is 1/e.

The shape factor according to different cross-sec-
tional shapes has been adapted. Equation (9) can be
expressed as eq. (11) considering the effect of shape
factor, KB.5

Pcr �
20.19EBKBI0

L2 �
20.19	r4EBKB

4L2 � �0.99EBKB�
D4

L2 (11)

where EB is the equivalent bending modulus, KB rep-
resents shape factor (where the KB of wool and alpaca
is 
1 and that of silk fiber is 1.209), I0 is the moment of
inertia of the circle. Hence, the stiffness of the fiber
needles depends on the value of EB or D or L.

According to eq. (11), the critical force Pcr is directly
proportional to D4/L2. Experimental data are shown
in Figure 6. With linear regression and variance anal-
ysis, the regressive equation for wool fibers is Pcr �
(1.4502 � 108)D4/L2, and the coefficient of correlation
R � 0.849.

The critical force can be simplified as:

Pcr � s
D4

L2 (12)

Thus, the equivalent bending modulus is

EB �
1.01 
 10�8s

KB
(13)

Here, s is the slope of the regression line and is equal
to 1.4502 � 108, because the cross section of wool is
nearly a circle, KB � 1. The cross section of alpaca is
nearly an ellipse, with the ratio of the major axis to
minor axis e about 4/3, and KB � 0.75; The cross
section of silk is nearly an equilateral triangle, KB

� 1.21. Thus, the equivalent bending modulus of the
single wool fiber is 1.47 GPa; the flexural rigidity is
4.46 � 10�5 cN cm2. The results of calculation are
shown in Table III.

The essential characteristic value of fiber bending
and buckling is reflected by the equivalent bending
modulus, which is independent of fiber diameter and
determined only by fiber structure. The integral aver-
age sum of the tensile tangent modulus and compres-
sion modulus, according to eq. (4), is numerically
equal to the equivalent bending modulus. From all of
our measurements, the equivalent bending modulus
of alpaca is larger than wool to certain extent, and
three times smaller than that of silk, which suggests
that the bending properties of keratin fibers is rela-
tively similar, but different with silk protein fibers.
The reason is probably due to the difference of �-he-
lical and �-sheet structures.

The flexural rigidity, EBI, is the product of equiv-
alent bending modulus EB and moment of inertia I.
The moment of inertia is determined by fiber diam-
eter and cross-section shape. So the softness or stiff-
ness of single fibers should combine the equivalent
bending modulus with fiber diameter or cross-sec-
tion shape.

A comparison of bending characteristics of alpaca
and wool (see Table III) shows that the equivalent
bending moduli are near, but the flexural rigidity of
alpaca is 10 times greater than that of wool, which is
caused by the fiber diameter. Although the result in-
dicates that the single alpaca fiber is stiffn, the yarn
and fabric made of alpaca fibers, however, are still

Figure 6 The relationship of critical force with D4/L2. (A)
Wool fibers, (B) alpaca fibers, and (C) silk fibers.

TABLE II
Diameters and Slenderness of Single Fiber Sample

Sample
Diameter

(�m)

Protruding
length
(mm) Slenderness

Critical force
(10�5N)

Alpaca 42.6 1.72 40.5 575.68
Wool 29.5 1.14 38.7 168.56
Silk 10.5 0.41 39.4 35.42
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with a softer handle that is attributed to the smooth
surface characteristic of alpaca fibers.

Fiber friction

The frictional interaction between fibers is determined
by the morphology of fiber contacting surfaces and the
adherent forces between them. Figure 7 shows the
SEM images of a typical alpaca fiber and a wool fiber.
Compared with the wool fiber, the alpaca fiber scales
are thinner and denser. The lower scale height and
higher scale frequency for alpaca fibers make the fiber
slip easier than wool fibers do.

Friction coefficient, �, measured by the capstan
roller method for frictional tests of single fiber are
used to compare the friction characteristic of wool,
alpaca, and silk. The friction coefficient can be calcu-
lated from the formula10:

� �
InT2 � InT1

�
(14)

where � is the coefficient of friction; T2 and T1 are the
leaving and incoming tensions, respectively; � is the
wrapping angle and equal to 	. In the test, the running
surface speed of the roller is 7.5 m/min. The roller is
a hard steel roller.

The softness of yarns and fabrics handle is the com-
bination of the effect of fiber surface friction charac-
teristic and fiber bending properties. The frictional
force varies with many factors such as load, real con-
tact area, and geometry of contact. The structures of
yarn and fabric are also attributed to the handle per-
formance indirectly through changing the real contact
area and interaction force between fibers. The coeffi-

cient of kinetic friction of alpaca fiber either with
scales or against scale is less than wool fiber, as illus-
trated in Table IV. However, the equivalent bending
modulus of alpaca fibers is greater than that of wool
fibers. These results indicate that the soft handle of
alpaca fabrics should be mainly due to the surface
properties of alpaca fibers in contrast to wool fibers.
As the silk has similar coefficient of kinetic friction as
the alpaca, the smooth handle of the silk fabrics
should be mainly due to the fiber diameter in contrast
to keratin fiber.

CONCLUSIONS

Bending, flexibility, and buckling are very important
mechanical properties not only for textiles but also for
fibers. Using the FICBA, the bending properties of
single fibers are quantified by calculating the equiva-
lent bending modulus and the flexural rigidity by
measuring the protruding length and diameter of fiber
needles and the critical force Pcr from the F–d curves.
The equivalent bending modulus of alpaca fiber (2.15
Gpa) is a little more than that of wool fiber (1.47 Gpa),
whereas the flexural rigidity of alpaca fiber (43.55
� 10�5cN cm2) is 10 times as that of wool fiber (4.46
� 10�5cN cm2), which is due to the alpaca fiber diam-
eter (45.05 �m). The experimental results indicate that
the soft handle of alpaca fabrics should be due mainly
to the smooth surface and low friction coefficient of
alpaca fibers (0.279) in contrast to the high friction
coefficient of wool fiber (0.312). As the silk has similar
coefficient of friction (0.255) as that of the alpaca fibers
and higher equivalent bending modulus (4.58 GPa)
than that of keratin, the soft handle of silk should be
due to the fiber diameter (10.67 �m) in contrast to

TABLE III
Bending Characteristics of Single Fiber Sample

Sample No
Diameter mean

(�m)
Diameter standard
deviousness (�m)

Equivalent bending
modulus (GPa)

Flexural rigidity
(10�5c N cm2)

Wool 20 28.1 7.2 1.47 4.46
Alpaca 36 45.1 9.1 2.15 43.55
Silk 15 10.7 1.2 4.58 0.29

Figure 7 Scale structure of wool and alpaca.

TABLE IV
Kinetic Friction of Single Fiber

Sample Values of �

Wool with scales 0.312
Wool against scale 0.352
Alpaca with scales 0.243
Alpaca against scales 0.279
Silk 0.255
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keratin fibers (wool 28.1 �m; alpaca 45.1 �m). The
results of single-fiber bending test verify that the
method is useful, and provides a basis for researchers
to investigate the softness of textile handle in single
fiber. It can be believed that by using this measure-
ment technique as a criteria test, to evaluate and char-
acterize the bending properties of single fibers quan-
tificationally can be realized.

The authors thank Dr. Lijing Wang for assistance with the
fiber sample and Prof. Xugai Wang for helpful conversa-
tions.
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